ALL ON EDGE

Development of Objective Test Methods for Furniture Edges and Rims

"Adhesion resistance"

Workpackage WP-A

Magdalena Nowaczyk-Organista

Patrycja Hochmańska

Tomasz Oleszek

Surface Testing Department

Wood Technology Institute, Poznan

The National Centre for Research and Development

4rd UC Meeting

Dresden, 13-14 November 2017

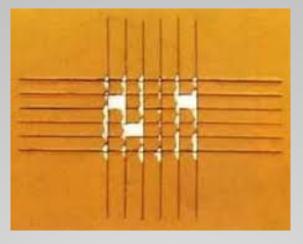
The aims of WP-A

Development or modification of resistance test methods to IMPACT and ADHESION.

- > Comparison of methods on their repeatability and reproducibility level.
- Preparation of the final description of suitable mechanical and adhesion methods as a proposal for the European Standardization Group.

Activities of WP-A - Adhesion

Responsible: ITD


TASKS	ACTIVITY	RESPONSIBLE	TASK STATUS
A-1	Definition, preparation and providing of different furniture edges	IHD/ITD	Done
A-3	Methodological investigations on new adhesion test methods	ITD	Done
A-4	Comparative tests of the methods on mechanical resistance	ITD/IHD	Lack of test samples
A-5	Round Robin Tests of optimized test methods - adhesion	IHD/ITD	During UC meeting/assessment
A-6	Final description of suitable methods for mechanical resistance	IHD/ITD	Work standard

Test materials

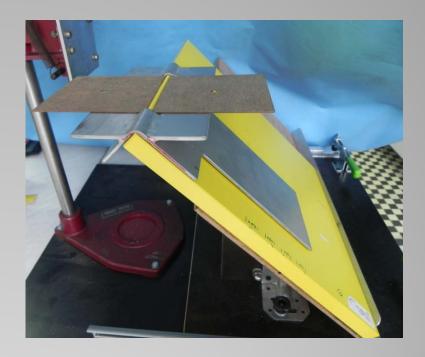
Variant	Substrate	Material on the edge	Material on the board surface	
14	MDF	Green-pigmented waterborne acrylic	Green-pigmented waterborne UV	
16	MDF	Grey-pigmented waterborne UV	Grey-pigmented waterborne UV	
17	MDF	Pink-pigmented waterborne UV	Pink-pigmented waterborne UV	
18	Beech solid wood	Stain(black)/ 1K waterborne	Stain(black)/ 1K waterborne	
19	beech solid wood	Grey pigmented UV	Grey pigmented UV	
20	particleboard	Yellow-pigmented UV	Yellow-pigmented UV	

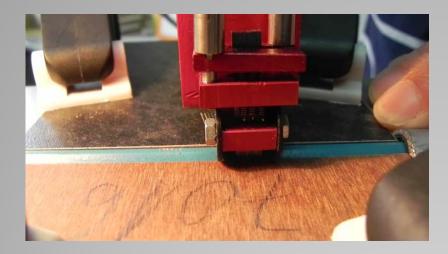
New assumption of adhesion test

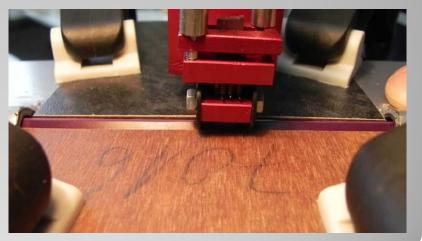
Use elements of methodology of– **cross-cut test** for flat surfaces – **acc to EN ISO 2409**

EQUIPMENT Multi-blade cutting tool - Spacing of cuts - 6 x 1 mm

The tests were done with self adjusting cutting head with automatic reset function for curved surfaces




Cutting knife with single resiliently mounted cutting edges


Positioning of test samples

Cutting of rims is made only in one direction The way of assessment - pass/fail scale rate after a short treatment with adhesive tape

Method on the base of EN ISO 2409 – Test 1 Test results

Comments:

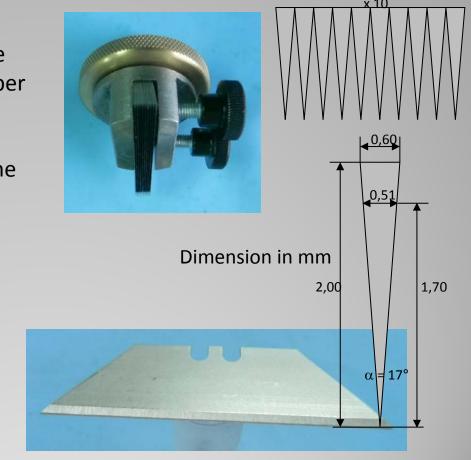
Test performance

Difficulty in uniform operating of the cutting tool taking into account:
influence of the type of rim (the biggest issue on square edges)
influence of substrate

Assessment

- □ visible cutting mark without pulling of coating
- due to rugged movement, the strong damage of coating, specially on the end movement
- no lacquer flakes on the adhesive tape

The method wasn't considered to further tests


Equipment:

- the mobile jig (base) test sample placed at an angle of 45° with upper edge extending beyond jig
- ✓ Set of 10 blades, distans 0,60 mm
- ✓ Instron mechanical testing machine

Test sample

jig

✓ Magnifier glass with backlight

4rd UC Meeting

Test assumption

Test panelsthe all surfaces and edges of test panel shall be finishedSize at least (250 x 250 x thickness) mm

Test parameters – the load from 50 N to 500 N, with step 50 N – head speed: 1mm/minute

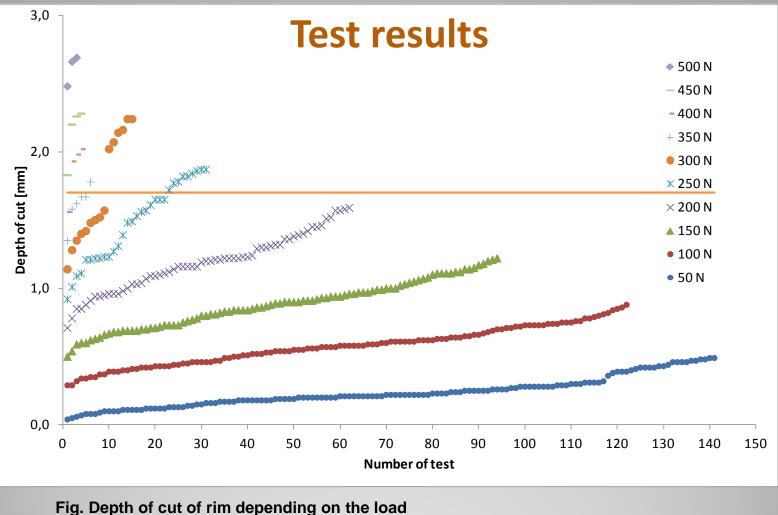
Assessment the result of test is the highest load [N] at which test area (rim) reveals no damages

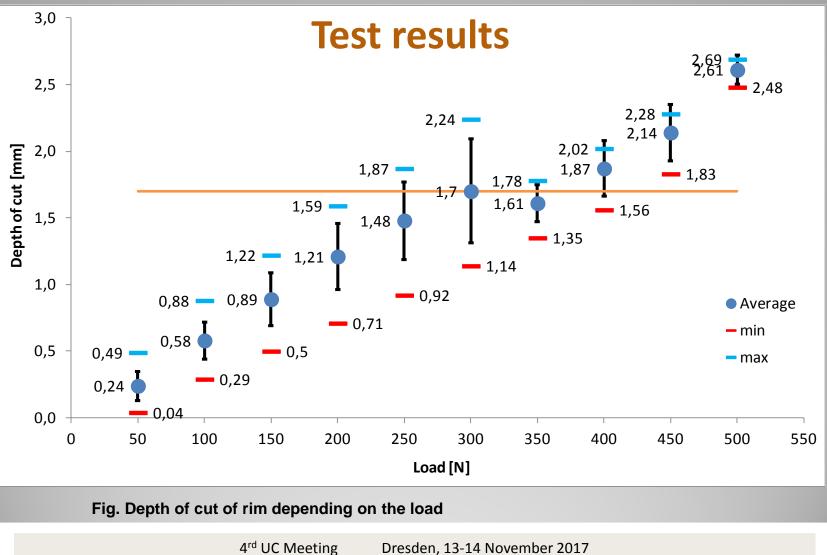
Damages are defined as :

- P The coating has flaked substrate is visible
- M The coating has flaked interlayer coating is visible

Expression of the test results

The individual values of 3 test areas (rim) shall be specified The final result is the lowest value of the 3 individual test areas


Test procedure:


- 1. Place the mobile jig (base) with test sample in Instron machine
- 2. Fix the head with the blade set at the angle of 45° to the rim
- 3. Place the head on the rim
- 4. Set the load
- 5. Start the test (the set of blade under defined load cut the rim)
- 6. Pull off the head
- Turn the head 90° and place it on the rim
- 8. Repeat procedure acc. to point 4-6
- 9. Continue the test acc. to step 1-8 for the next loads

4rd UC Meeting

Dresden, 13-14 November 2017

Test results

Variant	No	Load [N]			Final result [N]		
	No.	50	100	150	200	М	Р
14	1	—		М	М		
	2	—	—	М	M	< 50	150
	3	M	M	М	Р		
	1	Р	Р	Р	Р		
16	2	—	—	Р	Р	< 50	< 50
	3	—	Р	Р	Р		
	1	—	—		Р		
17	2	—	—		—	150	150
	3		—	_	_		
	1		—		—		
18	1		Р	Р	Р	50	50
	2	—	—	_	Р		
	1	М	М	М	М		
19	2	—	М	М	М	< 50	>200
	3	M	M	М	M		
	1	—	_	—	Р		
20	2	—	—		—	150	150
ating has	flaked –	substrate	is visible	, M-The	he coating ha	s flaked – inte	rlayer coating

4rd UC Meeting Dresden, 13-14 November 2017

P-Th

Summary

The method seems to be suitable for coated elements because

- has good materials differentation
- □ has clear and easy assessment way

Further steps:

- □ RRT during today's UC meeting
- Description of test method

Further steps after the project:

- □ Elaboration of simplest equipment insted of mechanical testing machine
- Proposal of work standard for European Standardisation Group

Thank You for your attention!

Magdalena Nowaczyk-Organista, PhD <u>m nowaczyk@itd.poznan.pl</u>

Patrycja Hochmańska, PhD (Eng) p_hochmanska@itd.poznan.pl

Tomasz Oleszek <u>t oleszek@itd.poznan.pl</u>

Surface Investigation Department Wood Technology Institute Winiarska 1 PL 60-654 Poznań phone: +48 61 849 24 45 fax: +48 61 822 43 72